104 research outputs found

    Three-Mode Failure Model for Reliability Analysis of Distributed Programs

    Full text link

    Calculating Performability Measures of Responsive Systems

    Full text link
    editor, Hoang Pha

    Using Bounded Model Checking to Verify Consensus Algorithms

    Get PDF
    This paper presents an approach to automatic verification of asynchronous round-based consensus algorithms. We use model checking, a widely practiced verification method; but its application to asynchronous distributed algorithms is difficult because the state space of these algorithms is often infinite. The proposed approach addresses this difficulty by reducing the verification problem to small model checking problems that involve only single phases of algorithm execution. Because a phase consists of a finite number of rounds, bounded model checking, a technique using satisfiability solving, can be effectively used to solve these problems. The proposed approach allows us to model check some consensus algorithms up to around 10 processes

    Verification of consensus algorithms using satisfiability solving

    Get PDF
    Consensus is at the heart of fault-tolerant distributed computing systems. Much research has been devoted to developing algorithms for this particular problem. This paper presents a semi-automatic verification approach for asynchronous consensus algorithms, aiming at facilitating their development. Our approach uses model checking, a widely practiced verification method based on state traversal. The challenge here is that the state space of these algorithms is huge, often infinite, thus making model checking infeasible. The proposed approach addresses this difficulty by reducing the verification problem to small model checking problems that involve only single phases of algorithm execution. Because a phase consists of a small, finite number of rounds, bounded model checking, a technique using satisfiability solving, can be effectively used to solve these problems. The proposed approach allows us to model check several consensus algorithms up to around 10 processes
    • 

    corecore